Categories
Uncategorized

Why Basic Anomaly Detection Fails in Energy Data (And How ML Fixes It) ⚡

Detecting anomalies in energy data is key to optimizing consumption, reducing costs, and ensuring building systems run efficiently. With the vast amount of data from smart meters, manual oversight isn’t practical—this is where machine learning (ML) steps in! 

 

The basic idea is simple: train an ML model to predict energy consumption based on historical data and use this model to compare predicted and measured values. Any significant deviation between the two can signal an anomaly. But how do we define and detect these deviations? There are several approaches, ranging from basic thresholding to advanced statistical and algorithmic methods, which we will explore in this article.

Basic Anomaly Detection Algorithms

Absolute Value Deviation – The simplest approach is setting a fixed absolute threshold. If the difference between measured and predicted energy consumption surpasses a set threshold, it is identified as an anomaly. While straightforward, this approach doesn’t scale well across different buildings, for instance, a threshold that works well for a large office building may lead to false positive or missed anomalies in a small retail store.

📊 Relative Value Deviation – A more adaptable method considers deviations as a percentage of the predicted value, e.g., more than 50% deviation triggers an alert. This works well across varying energy scales but can cause false positives for buildings with low consumption.

🔗 Combined Approach – The best of both worlds! By applying both absolute and relative thresholds, anomalies are flagged only when both criteria are met (e.g., >20% deviation and >5 kW). Adding a minimum duration filter helps avoid false alarms from short-lived fluctuations.

An example of relative value deviation rule with a 50% threshold.
Advanced Anomaly Detection Algorithms

The above-mentioned basic algorithms can be simple and effective, they may struggle with complex patterns and time-dependent variations in energy data. Let’s have a look at more advanced anomaly detection algorithms that enhance accuracy and reliability.

 

🔢 Statistical Tests – Statistical methods offer a more sophisticated approach. For example, energy consumption profiles for weekends can be compared to typical weekday profiles. If weekend energy usage closely resembles a workday pattern, it may indicate that HVAC systems are not being properly adjusted for setbacks.

📈 Integral-Based Comparison – This method integrates the differences between predicted and measured values over time. By accumulating small deviations, it detects anomalies when the cumulative difference crosses a predefined threshold. This approach is particularly effective for identifying subtle but persistent changes that might be missed by simpler methods.

Quantifying Temporal Dissimilarity – Advanced techniques like the CORT dissimilarity index go beyond magnitude comparisons, capturing temporal misalignments between predicted and measured values. For instance, if energy consumption lags or leads expected trends, CORT can highlight these discrepancies. Compared to basic thresholding, such methods provide deeper insights into the nature of anomalies, particularly in time-dependent patterns.

An example of daily integral rule.
Practical Considerations for Anomaly Detection

So far, we’ve covered both fundamental and advanced techniques for detecting anomalies in energy data. But theory alone isn’t enough—real-world implementation comes with its own set of challenges. In this article, we’ll focus on two key aspects: handling holidays and effectively representing anomalies.

 

🎄 Handling Holidays – Holidays present unique challenges for anomaly detection since they disrupt regular energy consumption patterns. Inaccurate modeling of holidays can lead to missed anomalies or false positives. At Energy Twin we address this issue by treating holidays as an “eighth day of the week” – separate from Saturdays or Sundays with distinct modeling properties. Holidays can be downloaded automatically based on location or manually defined, ensuring accurate anomaly detection even during non-standard periods. Automatically downloading holidays simplifies working with international portfolios, ensuring consistency across different regions.

📊Representing Anomalies – When managing large building portfolios, anomaly detection can generate hundreds of alerts. Without effective representation, prioritizing and acting on these anomalies becomes overwhelming. Energy Twin models integrate seamlessly with existing solutions such as SkySpark’s Swivel feature, providing intuitive, portfolio-wide overviews. Instead of sifting through endless alerts, building managers can pinpoint key anomalies in minutes, ensuring efficient monitoring and decision-making across their entire portfolio.

An example of detected Czech public holiday - 28th October.
Conclusion

Anomaly detection is a cornerstone of energy efficiency, enabling proactive management and substantial cost savings. Machine learning enhances this process, providing precise and reliable models that minimize false alarms—often the biggest challenge in deploying such systems.

 

At Energy Twin, finely tuned ML models and robust integrations with tools like SkySpark empower us to monitor hundreds of buildings in mere minutes. This ensures no significant issue in energy consumption goes undetected, delivering actionable insights that translate into real-world benefits. With ML-driven anomaly detection, energy efficiency is not just a goal but an achievable reality – turn anomaly detection into strategic advantage! 🚀

Categories
Uncategorized

4 “Reasons” Why Not to Use AI in Energy Sector (And Why They Don’t Hold Up)❌

AI has become a buzzword in the energy sector, promising efficiency, cost savings, and data-driven decision-making. Many see its potential and are intrigued by what it could do for their operations. Yet, when it’s time to take the leap, hesitation sets in. Concerns arise, often disguised as logical reasons to delay adoption. But are these genuine obstacles or just common misconceptions?

 

Let’s take a closer look at the four most common concerns about AI in energy management—and how they can be addressed

Reason #1: “We Don’t Have People to Operate AI Tools”

AI tools often come with the perception that only the most skilled technicians can operate them effectively. Since these experts are already managing critical tasks, organizations hesitate, worrying that adopting AI will stretch their team even thinner. The concern isn’t just about learning new tools—it’s about balancing priorities without disrupting daily operations.

 

Solution: Adopting AI doesn’t have to add to your team’s workload. Many AI providers offer more than just software—they provide support, data handling, and actionable insights, so your organization can benefit without needing in-house expertise from day one. Over time, your team can gradually build familiarity with the tools if needed, but AI can start delivering value right away without straining your workforce.



Reason #2: “Adding AI Feels Like One More Problem to Solve”

Maintenance teams are already operating at capacity, juggling countless requests and addressing urgent issues as they arise. The idea of implementing AI can feel overwhelming—like adding even more problems to their workload. To them, more data often translates to more tasks, further complicating an already demanding routine.

 

Solution: Rather than adding to the workload, AI helps teams focus on what truly matters. By prioritizing issues based on real impact—whether energy savings, cost reduction, or operational efficiency—AI cuts through the noise. It removes the human bias that often influences decision-making, ensuring that attention goes to the most critical problems, not just the loudest requests. This allows teams to work more efficiently, saving both time and resources.

Reason #3: “Our Building Is Unique”

Despite numerous studies  showing the potential energy savings from data analysis and energy management systems (EMIS), many customers remain skeptical. They acknowledge that energy efficiency works in theory but struggle to see how AI-powered analytics apply to their specific facility. Traditional upgrades like insulation are easily understood as physical improvements while AI-driven insights may seem abstract. This skepticism keeps many from exploring AI’s real potential in their operations.

 

Solution: Building performance naturally declines over time—no system is immune. AI tools help efficiently identify and address issues that might otherwise go unnoticed. While not every issue can be solved, addressing the right ones leads to measurable improvements. The proven savings seen in studies and other buildings aren’t just theoretical—they’re just as likely to apply to yours.

 

Reason #4: “We Just Don’t Have the Budget”

Many organizations hesitate because budgets are tied to existing services, making it unclear who should fund new innovations. Delaying AI adoption could mean missing out on significant financial and operational benefits.

Solution: The ROI from AI-powered energy management is so compelling that it turns budget concerns into opportunities. Many AI tools pay for themselves in less than two years—sometimes in just months—delivering not only cost savings but also long-term operational and efficiency benefits. The financial gains come from identifying inefficiencies, optimizing energy use, and preventing waste—all of which drive significant cost savings.

Moreover, the benefits go beyond short-term savings. AI tools enable organizations to future-proof their operations, support ESG commitments, and establish a foundation for continuous improvement. Allocating a budget for AI isn’t just about funding a project—it’s about investing in a long-term strategy for smarter energy management and sustained efficiency.



Conclusion

Excuses are easy to find, and most organizations struggle with more than one—often all of them. Resistance to change is natural, but history has shown that those who hesitate to adapt risk being left behind. Industries across the board illustrate this reality: Kodak’s reluctance to embrace digital photography led to its downfall, Nokia’s failure to innovate cost it dominance in mobile phones, and traditional taxi companies lost ground to ride-sharing platforms like Uber and Lyft. The lesson is clear—ignoring innovation often leads to irrelevance. 

 

In today’s fast-evolving landscape, AI in energy management isn’t just an option; it’s a competitive advantage. Organizations that embrace AI unlock efficiency, savings, and long-term sustainability. The real question isn’t whether you can afford to adopt AI—it’s whether you can afford not to.