Categories
Uncategorized

Energy Twin – Example of utilising Machine Learning in the Energy Sector

Let us show you how Energy Twin utilises machine learning in a real-world example.

Take an extensive building portfolio. Human experts cannot oversee hundreds of key measurements in real-time. How can we efficiently monitor electrical energy consumption and detect anomalies?

The answer is – machine learning. Energy Twin analysed the electrical energy meter of more than 150 buildings. A comprehensive overview of anomalies across the entire portfolio can be provided within minutes with identified candidates for detailed inspection using models of prediction and measured data.

This way, experts spend their valuable time only on the problematic buildings and leave the tedious work of monitoring all of the buildings to Energy Twin.

Detected anomalies were caused by various reasons – from local heaters with no setback to air doors manual regime override or wrong setup of an electrical meter. Such faults can remain undetected without using machine learning, resulting in unnecessary building operation costs.

Categories
Uncategorized

Evaluation of Covid 19 Impacts on Energy Consumption Using Machine Learning

SkyFoundry has published a new Energy Twin case study. In this case study, we focus on the electrical energy consumption of three shopping malls during the covid 19 pandemics.

Using the Energy Twin, we can evaluate average weekly profiles for each period, compensating for the effect of the different outdoor temperatures. The Energy Twin model predicts how the energy consumption would look like with real weather conditions. We then compare the difference between measured data and Energy Twin model prediction.